About me

DSC00330I am currently a PhD student and HHMI Gilliam Fellow in the MCO program at Harvard. I am pursuing thesis research on gut microbes in the Balskus lab in the Department of Chemistry and Chemical Biology. Though I now have the honor to work in some of the world’s finest laboratories, my first experiments were done in the kitchen, mixing solutions, testing cooking temperatures, and tending microbial communities in sourdough starters. Cooking catalyzed my interest in science and so I first started my journey in research with the goal of modifying food in the kitchen. I then branched out to understand how molecules from food and other sources are modified by natural systems.

Research abstract

F1.largeThe human gastrointestinal (GI) tract harbors a vast microbial community with a collective genome size 150 times larger than the human genome. With such metabolic potential, the gut flora can modulate the bioactivity and bioavailability of a wealth of host-derived molecules, including drugs, pollutants and dietary components. However, the biochemical details of these transformations and their biological importance for the individual microorganisms, the microbial community, and the human host, remain poorly understood. At the interface of chemistry and microbiology, my research aims to identify the enzymes and microbes that transform neurotransmitters, drugs, and dietary molecules. Discovering the enzymes that modify these molecules could ultimately allow us to manipulate gut microbes and their chemistry, for example by inhibiting detrimental pathways and promoting beneficial activities. Ultimately, this could guide development of new dietary and medicinal therapeutics and lay the foundation for a new era of personalized nutrition and medicine.



Vayu Maini Rekdal, Paola Nol, Michael Luescher, Sina Kiamehr, Chip Le, Jordan Bisanz,  Peter Turnbaugh, Elizabeth Bess, Emily Balskus. A widely distributed enzyme class enables gut microbial metabolism of plant-and host-derived catechols. eLife. Accepted.

This paper discloses the discovery of a new class of enzymes that is allows human gut bacteria to break down neurotransmitters (dopamine and noradrenaline) and dietary molecules from plants. We found that these enzymes do not just allow human gut microbes to perform important functions inside the human body, but these enzymes are also present in microbes living in other environments, including other mammals, the ocean, and the soil. Our discovery of these enzymes provides new insight into how gut microbes interact with the human nervous system and how they break down components of our diet. It also uncovers processes that could be important for the function of other ecosystems on the planet.

Vayu Maini Rekdal, Elizabeth Bess, Jordan Bisanz, Peter Turnbaugh, Emily Balskus. Discovery and inhibition of an interspecies pathway for gut microbial Levodopa metabolism. Science. 2019.

In this paper, we discover the gut microorganisms and enzymes that metabolize L-dopa, the main drug used to treat Parkinson’s disease. We use this information to 1) predict how samples from patients metabolize L-dopa and 2) develop a small molecule that inhibits gut bacterial metabolism and increases drug bioavailability in mice. 

Selected features of this work:

How microbes shape our response to drugs. Scientific American. 2020.

Reese Hitchings and Libusha Kelly. Drug Metabolism as a Community Effort. Cell Metabolism. 2019.

Cora O’Neil. Gut microbes metabolize Parkinson’s drug. Science. 2019.

Parkinson’s-lakemedel paverkas av tarmbakterier. Sveriges Radio. 2019.

Gut-Dwelling bacterium consumes Parkinson’s drug. NIH Director’s Blog. 2019.

Gut microbes eat our medication. Science Daily. 2019

Gut microbes eat our medication. Harvard University Gazette. 2019

Gut bacteria can EAT medication. Daily Mail. 2019

Rachel Carmody, Jordan Bisanz, Benjamin Bown, Corinne Maurice, Svetlana Lyalina, Katherine Louie, Daniel Treen, Katia Chadaideh, Vayu Maini Rekdal, Elizabeth Bess, Peter Spanogiannopoulos, Qi Yan Ang, Kylynda Bauer, Thomas Balon, Katherine Pollard, Trent Northen, Peter Turnbaugh. Cooking shapes the structure and function of the gut microbiome. Nature Microbiology. 2019

This paper explores the impact of food processing on the gut microbiota. This paper demonstrates that not just the the kind of food ingredients humans ingest, but the nature of how food is prepared, impacts the structure and function of the gut microbial community in lab animals and in humans. 

Selected features of this work:

When the menu turns raw, your microbes know what to do. New York Times. 2019.

Jordan E Bisanz, Paola Soto-Perez, Kathy N Lam, Elizabeth N Bess, Henry J Haiser, Emma Allen-Vercoe, Vayu Maini Rekdal, Emily P Balskus, Peter Turnbaugh. Illuminating the microbiome’s dark matter: a functional genomic toolkit for the study of human gut Actinobacteria. BiorXiv (

In this paper we isolate and sequence the genomes of a particular group of gut microbes that are prevalent in humans.

Eric Battaglioli, Vanessa Hale, Jun Chen, Patricio Jeraldo, Coral Ruiz-Mojica, Bradley Schmidt, Vayu Maini Rekdal, Lisa Till, Lutfi Huq, Samuel Smits, William Moor, Yava Jones-Hall, Thomas Smyrk, Sahil Khanna, Darrell Pardi, Madhusudan Grover, Robin Patel, Nicholas Chia, Heidi Nelson, Justin Sonnenburg, Gianrico Farrugia, Purna Kashyap. C. difficile exploits a complex metabolic niche associated with microbial dysbiosis in patients with diarrhea. Science Translational Medicine. 2018.

In this paper we describe factors that render people susceptible to a deathly bacterial infection by the pathogen Clostridium difficile. We find that this pathogenic microorganism thrives in the gut when amino acids are available. These findings are validated in humans. 

Vayu Maini Rekdal, Emily Balskus. Gut Microbiota: Rational Manipulation of Bacterial Metalloenzymes Provides Insights into Dysbiosis and Inflammation. Biochemistry. 2018.

This paper summarizes the major findings of a paper that describes how to manipulate gut microbial metabolism using the transition metal tungsten

Nitzan Koppel, Vayu Maini Rekdal, Emily Balskus. Chemical transformation of xenobiotics by the human gut microbiota. Science. 2017.

This paper is a review article that describes what is known about gut microbial metabolism of drugs, pollutants, and dietary components. We also reflect on where the field should move in the future. 

Vayu Maini Rekdal, Mhd Firas Alnahhas, John F. Rainey, Christopher S. Reigstad, Sahil Khanna, Madhusudan Grover, M Donna Felmlee Devine, Nicholas Chia, Edward V. Loftus, Lisa A. Boardman, David A. Ahlquist, Darrell S. Pardi, Gianrico Farrugia, Purna C. Kashyap. Chronic Diarrhea in Subset of Patients With IBD and IBS is Associated With Altered Microbiota. Gastroenterology, Volume 146, Issue 5 , S-83, 2014.

We describe microbial community patterns that are related to diarrhea in humans.


Alicia Foundation. A Chef’s Guide to Gelling, Thickening, and Emulsifying Agents. CRC Press. 2014

This book describes the scientific principles and culinary uses of texturizers in the kitchen. I contributed original research and writing to this book, along with other members of the Foundation Alicia team